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Impedance and admittance matrices are presented for the analysis of the beam-type
piezoelectric multimorph (PM). Each piezoelectric layer is polarized in the thickness
direction. The stacking sequence can be arbitrary, and both the extensional and flexural
motions are considered. The variational principle is used for deriving the lumped conjugate
parameters: two mechanical ports for the extensional motion, four mechanical ports for the
flexural motion, and m electrical ports for the m piezoelectric layers. The resonance and
antiresonance frequencies are then easily calculated from the admittance matrices. For the
case of all the piezoelectric layers either in series or parallel connection, the m+6 ports
reduce to the seven ports, and its impedance and admittance matrices are presented. The
present methods are applied to the cantilevered PM and their electromechanical behavior is
studied. The tip trajectory of the cantilevered piezomotor is also investigated using the
presented matrices. It is found that the present methods are very effective in analyzing the
multilayer piezoelectric transducers.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The piezoelectric unimorph and bimorph have been widely used in many applications,
such as electroacoustic transducers, medical devices, microrobot, and atomic force
microscope cantilevers due to the characteristics of miniaturization, high positioning
accuracy, sensitive response, and large displacement [1–4]. However, they show, compared
with piezoelectric stack actuator, disadvantages in generative force and response speed.
Recently, to increase the converted mechanical energy per volume of piezoelectric material
or to reduce the operating voltage, the piezoelectric multimorph (PM), i.e., the
piezoelectric multilayer actuator in the extensional and flexural motions, has been
designed and applied to air jet actuator [5] and piezomotor [6], etc.
The impedance and admittance matrices are often used in the analysis of piezoelectric

transducers since the lumped parameters conveniently describe the electromechanical
behavior and show the equivalent circuit of the transducers [7–10]. The resonance
frequencies (RF) and the antiresonance frequencies (AF) which are very essential in the
design of piezoelectric transducers [1, 11] can be effectively calculated using the admittance
matrix.
Numerous investigations have been made into the analysis and design of the

piezoelectric benders. Smits et al. [8, 9, 12] derived the dynamic admittance matrix and
calculated the electrical and mechanical RF and AF together with the effective coupling
factors of the cantilevered piezoelectric bimorph. Wang et al. [13–15] constructed the
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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constitutive equations of symmetrical triple layer piezoelectric bimorph and discussed non-
linear piezoelectric behavior and sensing effect of cantilevered unimorph and bimorph
actuators. Rogacheva et al. [16] and Chang and Chou [17] investigated the electro-
mechanical characteristics of symmetric and asymmetric piezoelectric bimorphs. Cho et al.
[18] presented a five-port impedance matrix and equivalent electric circuit of piezoelectric
bimorphs. Tanaka et al. [19] formulated basic equations for the multilayer piezoelectric
beams in flexural motion using Hamilton’s principle and Aoyagi et al. [20] presented a
block equivalent circuit of bimorph with multiple elastic layer. However, impedance and
admittance matrices of the PM are not reported until now.
In this paper, the differential equations for the extensional and flexural motions of the

beam-type PM are decoupled and the mechanical and electrical boundary conditions are
derived using the variational principle. A systematic procedure of deriving impedance and
admittance matrices is then presented. Using the derived matrices, the characteristic
equations are then presented, from which the resonance and antiresonance frequencies and
eventually the effective electromechanical coupling factors (EECF) can be calculated. For
the case of all the piezoelectric layers either in series or parallel, seven-port impedance and
admittance matrices are also presented. In the numerical examples, the cantilevered PM in
series or parallel connection is analyzed using the present methods and the tip trajectory of
the cantilevered piezomotor is also investigated. The results are then compared with the
three-dimensional finite element solutions. Excellent agreements are observed between the
results by the impedance matrix and the finite element methods (FEM).

2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The cross-sectional view of the beam-type PM in the cartesian co-ordinate system x, y,
and z is shown in Figure 1. The length, the width, the number of layers, and the thickness
of the qth layer are denoted by ‘, w, m, and h(q), respectively, and each layer can be either
piezoelectric or non-piezoelectric. The PM is assumed to be so thin and narrow that the y

and z direction dependent stresses vanish; the only non-zero stress is Tx. Each qth
piezoelectric layer (q=1,. . .,m) is polarized in the thickness direction, i.e., parallel to the
z-axis, and metallized on the top and bottom faces of the piezoelectric layer, i.e., z=z(q) and
z=z(q�1) so that the x and y directional electric fields also vanish. The one-dimensional
constitutive equations for a piezoceramic is written as [21]

Tx ¼ c11Sx � e31Ez; Dz ¼ e31Sx þ e33Ez; ð1a;bÞ
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Figure 1. Configuration of the beam-type piezoelectric multimorph (PM). , electrode; ‘, piezoelectric or
non-piezoelectric layer.
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where

c11 ¼
1

sE
11

; e31 ¼
d31

sE
11

; e33 ¼ eT
33 �

d231
sE
11

: ð2Þ

Tx and Sx in equation (1) are the axial normal stress and strain, and Dz and Ez are the
electric displacement and field, respectively. c11 and sE

11are the elastic stiffness and
compliance under the constant electric field, e31 and d31 are the piezoelectric stress and
strain constant, e33 and e33 are the dielectric constant under the constant strain and
constant stress, respectively.
The extensional and flexural motions are considered, and the displacements, based on

the Kirchhoff assumption, are assumed to be

uxðx; zÞ ¼ u0ðxÞ � zuz;x; uzðx; zÞ ¼ uzðxÞ; ð3Þ

where the subscript x following a comma indicates the x directional spatial derivative. In
equation (3), u0 is the axial extensional displacement, i.e., the displacement ux at the
neutral axis (z=0) that will be determined later. The strain–displacement relationship is
then expressed as

Sx ¼ ux;x ¼ uo;x � zuz;xx: ð4Þ

The electric field of the qth piezoelectric layer is approximated as

EðqÞ
z ¼

cðqÞ � cðq�1Þ

hðqÞ ¼
V ðqÞ

hðqÞ ; ð5Þ

where c(q) and c (q�1) are the electric potentials on the upper and lower electrodes of the
qth layer, respectively.
The steady state responses of the PM are considered here. Therefore, the mechanical

and electrical responses are assumed to be in harmonic motion with the same frequency as
the excitation frequency o and the time dependence term ejot is omitted in the following
derivation. The internal energy L for the motion of the PM is then defined as

L ¼ 1
2

Z
u
f�ro2ðu2x þ u2zÞ þ TxSx � DzEzg du; ð6Þ

where u denotes the total volume of the PM and r is the mass density. The variational
principle yields

dL=w ¼
Z Z

f�ro2ðuxdux þ uzduzÞ þ TxdSx � DzdEzg dz dx: ð7Þ

In the calculus of variations, u0, uz, and V(q) are considered as the independent
variables. After substituting equation (3) into equation (7), the integration of the first term
becomes Z Z

ro2ðuxdux þ uzduzÞ dz dx ¼
Z ‘

0

rho
2ðu0du0 þ uzduzÞ dx; ð8Þ

where the rotational inertia is neglected, and rh indicates the mass density per unit length.
The second term in equation (7), after integration by parts, becomesZ Z

TxdSx dz dx ¼ �
Z ‘

0

Nx;xdu0 dx þ
Z ‘

0

Mx;xxduz dx

þ Nxdu0
‘
0

�� þ Mxduz;x
‘
0

�� þ Rxduz
‘
0

�� ; ð9Þ
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where the extensional load Nx, the flexural moment Mx, and the transverse shear force Rx

are defined as

NxðxÞ ¼
Z

Tx dz; MxðxÞ ¼ �
Z

Txz dz; RxðxÞ ¼ �Mx;x: ð10a�cÞ

Using equation (5), the third term in equation (7) becomes

Z Z
DzdEz dz dx ¼

Xm

q¼1

Z Z
ðqÞ

DðqÞ
z

dV ðqÞ

hðqÞ dz dx ¼
Xm

q¼1

QðqÞdV ðqÞ; ð11Þ

where the charge of the qth layer is defined as

QðqÞ ¼
1

hðqÞ

Z Z
ðqÞ

DðqÞ
z dz dx: ð12Þ

Notice that the charge, as a conjugate parameter of voltage in equation (5), is represented
by an averaged electric displacement through the thickness direction rather than by the
value on the surface. Combining equations (8), (9), and (11) finally yields

dL=w ¼
Z ‘

0

fð�Nx;x � rho
2u0Þdu0 þ ðMx;xx � rho

2uzÞduzg dx

þ Nxdu0
‘
0

�� þ Mxduz;x
‘
0

�� þ Rxduz
‘
0

�� �
Xm

q¼1

QðqÞdV ðqÞ; ð13Þ

which yield the extensional and flexural equilibrium equations:

Nx;x þ rho
2u0 ¼ 0; Mx;xx � rho

2uz ¼ 0: ð14a;bÞ

As can be seen in equation (13), either force or displacement condition, each denoted in a
vector form, F and u, respectively, should be specified at the boundary:

FN ¼
�Nxð0Þ

Nxð‘Þ

 !
; uN ¼

u0ð0Þ

u0ð‘Þ

 !
; ð15aÞ

FF ¼

�Mxð0Þ

�Rxð0Þ

Mxð‘Þ

Rxð‘Þ

0
BBB@

1
CCCA; uF ¼

uz;xð0Þ

uzð0Þ

uz;xð‘Þ

uzð‘Þ

0
BBB@

1
CCCA: ð15bÞ

The last term in equation (13) also states that either electric charge or voltage should be
given for each qth layer:

Q ¼

Qð1Þ

..

.

QðmÞ

0
BB@

1
CCA; V ¼

V ð1Þ

..

.

V ðmÞ

0
BB@

1
CCA: ð16Þ

Substituting equations (1b) and (4) into equation (12) yields the expression for the electric
charge of each layer:

QðqÞ ¼
1

hðqÞ

Z Z
ðqÞ

e
ðqÞ
31Sx dz dx þ CðqÞV ðqÞ

¼ e
ðqÞ
31 u0

‘
0

�� � e
ðqÞ
31 zðqÞc uz;x

‘
0

�� þ CðqÞV ðqÞ; ð17Þ
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where zc
(q)=(z(q)+z(q�1))/2 is the z directional co-ordinate of the center of the qth layer with

respect to the neutral axis and C(q) is the clamped capacitance of the qth layer:

CðqÞ ¼ ‘
eðqÞ33
hðqÞ: ð18Þ

Substituting equations (1a), (4), and (5) into equation (10) yields the following expressions
for the extensional load and the flexural moment:

Nx

Mx

 !
¼

A11 B11

B11 D11

" #
u0;x

uz;xx

 !
þ

N�
x

M�
x

 !
: ð19Þ

The equivalent extensional load N�
x and the equivalent flexural moment M�

x due to the
applied voltages are defined as

N�
x ¼ �

Z
e31Ez dz ¼ �

Xm

q¼1

e
ðqÞ
31V ðqÞ; M�

x ¼
Z

e31Ezz dz ¼
Xm

q¼1

e
ðqÞ
31 zðqÞc V ðqÞ: ð20a;bÞ

In equation (19), A11, B11, and D11 are defined as

A11 ¼
Z

c11 dz ¼
Xm

q¼1

c
ðqÞ
11 hðqÞ; B11 ¼ �

Z
c11z dz ¼ �

Xm

q¼1

c
ðqÞ
11 hðqÞzðqÞc ; ð21a;bÞ

D11 ¼
Z

c11z
2 dz ¼

Xm

q¼1

c
ðqÞ
11 ðh

ðqÞzðqÞ2c þ hðqÞ3=12Þ: ð21cÞ

As can be seen in equations (14) and (19), the differential equations for the extensional and
flexural motions can be decoupled by the vanishing B11. This is made possible by properly
choosing the position of z=0, i.e., the neutral axis. Let z0 be the distance from a reference
axis, %zz=0, e.g. the bottom surface of the laminate, to the neutral axis, z=0. The distance z0
is determined such that B11 vanishes:

B11 ¼ �
Xm

q¼1

c
ðqÞ
11 hðqÞð%zzðqÞc þ z0Þ ¼ 0; z0 ¼ �

1

A11

Xm

q¼1

c
ðqÞ
11 hðqÞ %zzðqÞc : ð22Þ

Substituting equation (19) into equation (14) with the decoupled condition yields the
decoupled extensional and flexural motion equations:

u0;xx þ l2Nu0 ¼ 0; uz;xxxx � l4F uz ¼ 0: ð23a;bÞ

The parameters lN and lF are the functions of the angular frequency o and defined as

l2N ¼
rho

2

A11
; l4F ¼

rho
2

D11
: ð24Þ

3. IMPEDANCE AND ADMITTANCE MATRICES

In this section, the impedance and admittance matrices are derived using the results
obtained in the previous section. Using equations (14)–(16), equation (13) can be now
written as

dL=w ¼

FN

FF

�Q

0
B@

1
CA
T

d

uN

uF

V

0
B@

1
CA: ð25Þ
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As can be seen in equations (23) and (24), only elastic stiffness is involved in the
extensional and flexural motion equations for the PM. The general solution of equation
(23) can be expressed as

u0ðxÞ ¼ UNAN ; uzðxÞ ¼ UMAF ; ð26a;bÞ

where

UN ¼ ðcos lNx sin lNxÞ; ð27aÞ

UF ¼ ðcos lF x sin lF x cosh lF x sinh lF xÞ; ð27bÞ

AN ¼ ðA1 A2Þ
T; AF ¼ ðA3 A4 A5 A6Þ

T; ð27c;dÞ

where Ai are the coefficients to be determined using the boundary conditions.
As can be seen in equations (19) and (20), the extensional force can be represented as the

functions of displacements and the voltages exerted on the piezoelectric element. Thus, the
extensional forces at the ends FN can also be given in terms of the functions of
displacements at the boundary and the voltages. Using equations (19), (26a), (27a) and
(27c), the extensional forces are expressed in a matrix form:

FN ¼ BNAN þ PNV; ð28Þ

where the matrices BN and PN are defined as

BN ¼ A11lN

0 �1

�sN cN

" #
; PN ¼

e
ð1Þ
31 	 	 	 e

ðmÞ
31

�e
ð1Þ
31 	 	 	 �e

ðmÞ
31

" #
; ð29a;bÞ

where, for notation brevity, cN ¼ cos lN‘ and sN ¼ sin lN‘. The flexural forces at the ends
FF are also expressed in a matrix form similar to the extensional forces:

FF ¼ BFAF þ PFV; ð30Þ

where the matrices BF and PF are defined as

BF ¼ D11l
2
F

1 0 �1 0

0 �lF 0 lF

�cF �sF mF nF

�lF sF lF cF �lF nF �lF mF

2
6664

3
7775; ð31aÞ

PF ¼

�e
ð1Þ
31 zð1Þc 	 	 	 �e

ðmÞ
31 zðmÞ

c

0 	 	 	 0

e
ð1Þ
31 zð1Þc 	 	 	 e

ðmÞ
31 zðmÞ

c

0 	 	 	 0

2
66664

3
77775; ð31bÞ

where, for notation brevity, cF ¼ cos lF‘, sF ¼ sin lF‘, mF ¼ cosh lF‘, and nF ¼ sinh lF‘.
The matrices in equations (28) and (30) are combined and expressed as
follows:

F ¼ BAþ PV; ð32Þ

where

F ¼
FN

FF

 !
; A ¼

AN

AF

 !
; B ¼

BN 0

0 BF

" #
; P ¼

PN

PF

" #
: ð33Þ
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Notice that the off-diagonal terms are zero in the matrix B since the extensional and
flexural motions have been decoupled. Similar to the force and moment boundary
conditions, the displacement boundary conditions of equation (15) can also be expressed
in a vector form by using equations (26) and (27):

u ¼ GA; ð34Þ

where the displacement vector u and the matrix G are defined as

u ¼
uN

uF

 !
; G ¼

GN 0

0 GF

" #
; ð35Þ

where

GN ¼
1 0

cN sN

" #
; GF ¼

0 lF 0 lF

1 0 1 0

�lF sF lF cF lF nF lF mF

cF sF mF nF

2
6664

3
7775: ð36Þ

As can be seen in equation (17), the electric charge of each qth piezoelectric layer has
relationships with both the mechanical displacements and the electric voltages.
Considering the definitions of PN in equation (29b) and PF in equation (31b), the charge
vector in equation (25) can now be expressed as

Q ¼ �PTuþ CV; ð37Þ

where the matrix C in equation (37) is a diagonal matrix with each qth diagonal term
representing equation (18). Eliminating the coefficient vector A in equation (32) and using
equation (37), we obtain

F

Q

 !
¼

S P

�PT C

" #
u

V

 !
; ð38Þ

where

S ¼ BG�1: ð39Þ

The forces and the displacements are the spatial and time-dependence variables. They are
evaluated at the boundary and represented by the vectors. The velocities are also the
spatial and time-dependence variables. For the derivation of the impedance matrix, the
generic velocity vector U and current vector I are used instead of the generic displacement
vector u and charge vector Q, respectively. Since we are considering all the physical
quantities in a harmonic response, the following relations are used:

U ¼ ’uu ¼ jou; I ¼ ’QQ ¼ joQ: ð40Þ

where dots indicate differentiations with respect to time. It should be noticed that the time
dependence ejot has been omitted in the derivation. The velocity and charge vectors are the
lumped conjugate parameters of the force and voltage vectors, respectively. The exchange
of the charge vector for the voltage vector in equation (38) and using equation (40) easily
yields the impedance matrix:

F

V

 !
¼

ZM þ
1

jo
PC�1PT ZC

sym: ZE

2
4

3
5 U

I

 !
; ð41Þ
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where ZM is the mechanical impedance matrix under the short circuit condition, ZC is the
electromechanical coupling impedance matrix, and ZE is the electrical impedance matrix
under the all clamped condition:

ZM ¼
1

jo
S; ZC ¼

1

jo
PC�1; ZE ¼

1

jo
C�1: ð42a� cÞ

Exchanging the force vectors for the displacement vector in equation (38) and using
equation (40) yield the admittance matrix:

U

I

 !
¼ jo

S�1 �S�1P

sym: Cþ PTS�1P

" #
F

V

 !
: ð43Þ

The admittance matrix in equation (43) enables us to calculate the mechanical and
electrical responses of the transducers due to harmonic excitation by either forces at the
boundary or voltages in each piezoelectric layer. It is observed in equation (43) that both
the extensional and flexural motions can be generated by the exciting voltage because of
the non-zero matrix P. Equation (43) also facilitates the calculation of the mechanical and
electrical RF and AF. In case of no external load, i.e., F=0, the lower right corner
submatrix of equation (43) represents the multiport electrical admittance matrix Y(o) with
components of Yij relating the ith current with the jth voltage:

YðoÞ ¼ joðCþ PTS�1PÞ: ð44Þ

The poles and zeros of Y(o) give the characteristic equations that yield the RF or and the
AF oa of electric current, respectively. The EECF keff is then calculated using the RF and
the AF by applying the known expression [21]

k2eff ¼
o2a � o2r

o2a
: ð45Þ

In the cases of other boundary conditions than all mechanically free conditions
considered above, the dimensions of the impedance matrix in equation (41) and the
admittance matrix in equation (43) are reduced according to the specified displacement or
force conditions [10]. The RF, the AF, and the EECF can then be calculated as above.

4. MULTIPLE CONNECTIONS

In the above derivation, the piezoelectric layers are assumed to be connected
independently of each other. In general application, the electrical ports of the piezoelectric
layers can be connected in either series or parallel. In this case, m electrical ports of the PM
are reduced to one electrical port.
When all the electrical ports of the piezoelectric layers are connected in parallel, as

shown in Figure 2(a), the voltages of the parallel connected layers have the same
magnitude as externally applied voltage Vp and the currents of all the connected layers are
summed to the current Ip entering the voltage supplier:

V ðqÞ ¼ nðqÞVp; Ip ¼
Xm

q¼1

nðqÞI ðqÞ; ð46a;bÞ

where n(q) is 1 when the direction of applied voltage or current is the same as the direction
of positive current or voltage; otherwise �1. By applying equation (46) to equation (38),
the columns of the matrix P and the rows and columns of the matrix C in equation (38) are



(a) (b)

)1()1( ,VI

)2()2( ,VI

)()( , mm VI

)1()1( , −− mm VI
pV −+

pI

z

)1()1( ,VI

)2()2( ,VI

)()( , mm VI

)1()1( , −− mm VI

z

sV −+

sI

. . .
. . .

. . .
. . .

Figure 2. Multiple connections of the PM in parallel connection (a) and series connection (b).
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now summed up:

P ¼
Xm

q¼1

nðqÞe
ðqÞ
31 �

Xm

q¼1

nðqÞe
ðqÞ
31 �

Xm

q¼1

nðqÞe
ðqÞ
31 zðqÞc 0

Xm

q¼1

nðqÞe
ðqÞ
31 zðqÞc 0

 !T
; ð47aÞ

C ¼ Cp; ð47bÞ

where Cp is the clamped capacitance of the PM in parallel connection;

Cp ¼
Xm

q¼1

CðqÞ ¼ ‘
Xm

q¼1

eðqÞ33
hðqÞ: ð48Þ

The impedance and admittance matrices of the PM in the parallel connection are still
represented by equations (41) and (43), respectively, with P and C defined in equation (47).
For the series connection as shown in Figure 2(b), all the currents of the serially

connected layers are the same as each other, denoted by Is, and the voltages of the serially
connected layers are summed to externally applied voltage Vs:

Is ¼ I ðqÞ; Vs ¼
Xm

q¼1

V ðqÞ: ð49a;bÞ

The impedance matrix of the PM in series connection can be now obtained by applying
equation (49) to equation (41): the columns of the matrix ZC and the rows and columns of
the matrix ZE in equation (41) are summed up, i.e.,

ZC ¼
1

jo

Xm

q¼1

e
ðqÞ
31

CðqÞ �
Xm

q¼1

e
ðqÞ
31

CðqÞ �
Xm

q¼1

e
ðqÞ
31 zðqÞc

CðqÞ 0
Xm

q¼1

e
ðqÞ
31 zðqÞc

CðqÞ 0

 !T
; ð50aÞ

ZE ¼
1

joCs

: ð50bÞ

where Cs is the clamped capacitance of the PM in series connection;

Cs ¼
Xm

q¼1

1

CðqÞ

 !�1

¼ ‘
Xm

q¼1

hðqÞ

eðqÞ33

 !�1

: ð51Þ
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The admittance matrix of the PM in series connection can be now obtained by inversing
the impedance matrix in equation (41) with ZC and ZE defined in equation (50). If some
layers are connected in series and others in parallel, the derived equations can be
accordingly applied to each layered group.

5. NUMERCIAL RESULTS

In this section, the impedance and admittance matrices derived in the previous sections
are applied to three examples. G1195N piezoceramics and stainless steel are used for the
piezoelectric layers and the shim layer, respectively. The material properties are as follows:
for the G1195N, 1=sE

11¼ 61	0GPa, r¼ 7600	0 kg/m3, n¼ 0	3; d31¼ 254	0 pm/V, and
eT
33 ¼ 15	0 nF=m; for the stainless steel, 1=sE

11¼ 200	0GPa, r ¼ 7830	0 kg/m3, and n ¼ 0	3:
As a first example, the cantilevered PM with the shim layer, as shown in Figure 3(a), is

considered. The length, the number of piezoelectric layers, and the total thickness of the
PM are set to 75	0mm, 10, and 5	0mm, respectively. All the piezoelectric layers have the
same thickness and they are connected in series. The effects of the thickness of the shim
layer hs on the electromechanical behavior of the PM are investigated. Under the statically
exciting voltage, tip deflections and the blocking forces generated at the free end of the
cantilevered PM are calculated for the various thickness ratios hs /ht, and the results are
shown in Figure 3(b). As the thickness of the middle shim increases, the generative force
by the exciting voltage increases monotonically and the bending rigidity of the bimorph
increases exponentially, which results in the peak value of tip deflection when thickness
ratio is 0	4. The variations of the RF, the AF, and the EECF for the various thickness
ratios are shown in Figure 4(a) and 4(b). To verify the results by the present methods,
three-dimensional FEM [22] are used. The element has four degrees of freedom at a node,
i.e., three displacements and one electric potential. One hundred elements are used for the
axial direction, and 20 elements for the thickness direction. In the finite element analysis,
the tip deflection and the blocking force are calculated by the static analysis; the RF and
the AF are calculated by the modal analysis under the condition of short circuit and open
circuit, respectively [23]. Excellent agreements are shown in the results by the impedance
matrix and the FEM.
(a)

sV
−+

hs ht

Thickness ratio, hs /ht

0·00

0·02

0·04

0·06

0·08

0·10

0·12

0·0 0·2 0·4 0·6 0·8 1·0

T
ip

 d
ef

le
ct

io
n,

 u
z
[µ

m
]

0·0

0·2

0·4

0·6

0·8

1·0

1·2

B
lo

ck
in

g 
fo

rc
e

F
b

[N
/V

·m
]

(b)

Figure 3. (a) The cantilevered PM in series connection with the shim layer , shim layer;‘ piezoelectric layer;
, poling direction, , electric field. The tip deflection uz and blocking force Fb for the various ratios of the
thickness of the shim layer to the total thickness hs/ht. , uz (present); - - - -, Fb (present);&, uz (FEM);*, Fb

(FEM).
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Figure 5. (a) The cantilevered PM in parallel connection for flexural motion only (m=4) , poling direction;
, electric field. The tip deflection uz and blocking force Fb versus the number of piezoelectric layers: , uz
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In the second example, the cantilevered PM in parallel connection is considered. The
length and the total thickness are set to 75	0 and 5	0mm, respectively. All the layers are
G1195N piezoceramics and connected in parallel. The poling direction of each
piezoelectric layer is arranged in such a way that only flexural motion will be generated
by the applied voltage, as shown in Figure 5(a). Under the statically exciting voltage,
tip deflections and the blocking forces generated at the free end of the cantilevered
PM are calculated versus the number of piezoelectric layers, and the results are shown in
Figure 5(b). As the number of layers increases, both the displacement and blocking force
increase monotonically. The variations of the RF, the AF, and the EECF versus the
number of piezoelectric layers are shown in Figure 6(a) and 6(b). The results by the present
method agree well with the finite element solutions.
In the final example, a multilayer piezomotor, as shown in Figure 7(a), is analyzed. The

length, the thickness of the piezoelectric layer, and the number of piezoelectric layers are
10	0mm, 0	1mm and 10, respectively. All the layers are G1195N piezoceramics and they
are electrically connected in such a way that the top and bottom piezoelectric layers are
used to generate flexural motion by the applied voltage VF and others are used to generate
extensional motion by the applied voltage VN. The applied voltages are VN=cosot V and
VF=2cos(ot+y) V. The driving frequency o is 2288	0Hz which is half of the fundamental
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Figure 6. The resonance and antiresonance frequencies (a) and the electromechanical coupling factors (b) of
the cantilevered PM in parallel connection versus the number of piezoelectric layers; lines and symbols represent
the results by the impedance matrix and the FEM respectively.
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Figure 7. (a) The configuration of the cantilevered multilayer piezomotor , poling direction; , electric field.
(b) VN=cos(ot) V, VF=2cos(ot+y) V, m=10; the driving frequency o is the half of the fundamental RF. The
trajectory of the tip under the applied voltage. –}–, y=0; –&–, y=p/4; , y=p/2; –*–, y=3p/4; –m–, y=p.
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flexural RF of the PM. In the numerical calculations, the trajectory of the cantilevered PM
tip is calculated by superposing the extensional motion by the voltage VN and the flexural
motion by the voltage VF. In Figure 7(b), the trajectory of the cantilevered PM tip are
shown with respect to the phase difference y. When y is p/2, the trajectory of the PM tip
becomes elliptical and its aspect ratio can be changed by the magnitude ratio of VN and VF.

It is shown that the electromechanical behavior of piezomotor that is in harmonic motion
can be easily analyzed using the derived impedance and admittance matrices.

6. CONCLUSION

In this paper, the impedance and admittance matrices of the PM are presented. The
extensional and flexural motions have been considered in the derivation. On the
assumption of constant electric field in each piezoelectric layer, the motional differential
equations for the PM involve only the mechanical material properties and the
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electromechanical coupling appears only through the boundary conditions. Using the
derived matrices, the static and dynamic characteristics of the cantilevered PM in series or
parallel connection are investigated and the tip trajectory of the cantilevered piezomotor is
also investigated. The results are compared with those by the FEM and they are in
excellent agreement with each other.
It is expected that derived impedance and admittance matrices can be effectively used in

analyzing electromechanical systems where external mechanical or electrical components
are attached to the PM. The amplitude of the tip deflection or slope near the resonance
frequency can be calculated by employing the mechanical, piezoelectric, and dielectric
properties in complex variables, which can be determined by experiments. Even in these
cases, the expressions for the impedance and admittance matrices will be unaltered.
However, since the multimorph considered in this study is thin and narrow, care should be
taken in extending the Euler beam theory and the decoupling treatment to a relatively
general dimension.
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